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Abstract

Segmentation involves separating an object from the
background. In this work, we propose a novel segmenta-
tion method combining image information with prior shape
knowledge, within the level-set framework. Following the
work of Leventon et al., we revisit the use of principal com-
ponent analysis (PCA) to introduce prior knowledge about
shapes in a more robust manner. To this end, we utilize
Kernel PCA and show that this method of learning shapes
outperforms linear PCA, by allowing only shapes that are
close enough to the training data. In the proposed segmen-
tation algorithm, shape knowledge and image information
are encoded into two energy functionals entirely described
in terms of shapes. This consistent description allows to
fully take advantage of the Kernel PCA methodology and
leads to promising segmentation results. In particular, our
shape-driven segmentation technique allows for the simul-
taneous encoding of multiple types of shapes, and offers a
convincing level of robustness with respect to noise, clutter,
partial occlusions, or smearing.

1. Introduction

Segmentation consists of extracting an object from an
image, an ubiquitous task in computer vision applications.
It is quite useful in applications ranging from finding special
features in medical images to tracking deformable objects;
see [7, 14, 16, 17] and the references therein. The active
contour methodology has proven to be quite valuable for
performing this task. However, the use of image informa-
tion alone often leads to poor segmentation results in the
presence of noise, clutter or occlusion. The introduction
of shape priors in the contour evolution process has been
shown to be an effective way to address this issue, leading
to more robust segmentation performances.

Many different methods which use a parameterized or
an explicit representation for contours have been proposed

[2, 15, 3]. In [4], the authors use the B-spline parametriza-
tion to build shape models in the kernel space [8]. These
models were then used in the segmentation process to pro-
vide shape prior. The geometric active contour framework
(GAC) (see [12] and the references therein) involves a para-
meter free representation of contours, i.e., a contour is rep-
resented implicitly by the zero level set of a higher dimen-
sional function, typically a signed distance function [9]. In
[7], the authors obtain the shape statistics by performing
linear principal component analysis (PCA) on a training set
of signed distance functions (SDFs). This approach was
shown to be able to convincingly capture small variations
in the shape of an object. It inspired other schemes to ob-
tain shape prior described in [14, 11], notably, where SDFs
were used to learn the shape variations.

However, when the object considered for learning may
undergo complex or non-linear deformations, linear PCA
can lead to unrealistic shape priors, by allowing linear com-
binations of the learnt shapes that are unfaithful to the true
shape of the object. Cremers et al., successfully pioneered
the use of kernel methods to address this issue, within the
GAC framework [5]. In the present work, we propose to
use Kernel PCA to introduce shape priors for GACs. Ker-
nel PCA was presented by Scholkopf [8] and allows to com-
bine the precision of kernel methods with the reduction of
dimension in the training set. This is the first time, to our
knowledge, that Kernel PCA is explicitly used to introduce
shape priors in the GAC framework. In this paper, we also
propose a novel intensity segmentation method, specifically
tailored to allow for the inclusion of shape prior.

In the next section, we compare linear PCA to Kernel
PCA, using SDFs and binary maps as representations of
shapes. In Section 3, we propose an intensity-based en-
ergy functional in terms of binary shapes for separating an
object from the background, in an image. These energies
are qualitatively similar to the ones proposed by [1, 10] but
quantitatively different. In Section 4, we present a robust
segmentation framework, combining image cues and shape
knowledge in a consistent fashion. The robustness of the
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proposed algorithm is demonstrated on various challenging
examples, in Section 5.

2. Kernel PCA for shape prior

Kernel PCA can be considered to be a generalization of
linear principal components analysis. This technique was
introduced by Scholkopf [8], and has proven to be a pow-
erful method to extract nonlinear structures from a data set.
The idea behind Kernel PCA consists of mapping a data set
from an input space I into a feature space F via a nonlinear
function ϕ. Then, PCA is performed in F to find the orthog-
onal directions (principal components) corresponding to the
largest variation in the mapped data set. The first l principal
components account for as much of the variance in the data
as possible by using l directions. In addition, the error in
representing any of the elements of the training set by its
projection onto the first l principal components is minimal
in the least square sense.

The nonlinear map ϕ typically does not need to be
known, through the use of Mercer kernels. A Mercer kernel
is a function k(., .) such that for all data points χi, the ker-
nel matrix K(i, j) = k(χi, χj) is symmetric positive def-
inite [8]. It can be shown that using k(., .) one can obtain
the inner scalar product in F: k(χa, χb) = (ϕ(χa) ·ϕ(χb)),
with (χa, χb) ∈ I.

We now briefly describe the Kernel PCA method [6, 8].
Let τ = {χ1, χ2, ..., χN} be a set of training data. The
centered kernel matrix K̃ corresponding to τ , is defined as

K̃ = (ϕ(χi) − ϕ̄ · ϕ(χj) − ϕ̄)

= (ϕ̃(χi) · ϕ̃(χj)) = k̃(χi, χj), for i ∈ [|1, N |]
(1)

with ϕ̄ = 1
N

∑N
i=1 ϕ(χi) , ϕ̃(χi) = ϕ(χi) − ϕ̄ being the

centered map corresponding to χi and k̃(., .) denotes the
centered kernel function. Since K̃ is symmetric, using Sin-
gular Value Decomposition, it can be decomposed as

K̃ = USUt (2)

where S = diag(γ1, ..., γN ) is a diagonal matrix containing
the eigenvalues of K̃. U = [u1, ..., uN ] is an orthonormal
matrix. The column-vectors ui = [ui1, ..., uiN ]t are the
eigenvectors corresponding to the eigenvalues γi’s. Besides
it can easily be shown that K̃ = HKH, where H = I −
1
N 11t. 1 = [1, ..., 1]t is an N × 1 vector.

Let C denote the covariance matrix of the elements of the
training set mapped by ϕ̃. Within the Kernel PCA method-
ology, C does not need to be computed explicitly, only K̃
needs to be known to extract features from the training set
[13]. The subspace of the feature space F spanned by the
first l eigenvectors of C, will be referred to as the Kernel
PCA space, in what follows. The Kernel PCA space is the
subspace of F , obtained from learning the training data.

Let χ be any element of the input space I. The projection
of χ on the Kernel PCA space will be denoted by P lϕ(χ) 1.
The projection P lϕ(χ) can be obtained as given in [8]. In
the feature space F , the squared distance d2

F between a test
point χ and its projection on the Kernel PCA space is given
by [8]:

d2
F [ϕ(χ), P lϕ(χ)] = ‖ ϕ(χ) − P lϕ(χ) ‖2=

k(χ, χ) − 2ϕ(χ)tP lϕ(χ) + P lϕ(χ)tP lϕ(χ)

Using some matrices manipulations, this squared distance
can be expressed only in terms of kernels as:

d2
F [ϕ(χ), P lϕ(χ)] =

k(χ, χ) +
1

N2
1tK1 − 2

N
1tkχ + k̃

t

χMK̃Mk̃χ − 2k̃
t

χMk̃χ

(3)

where, kχ = [k(χ, χ1) k(χ, χ2) , ..., k(χ, χN )]t, k̃χ =
H(kχ − 1

N K1) and M =
∑l

i=1
1
γi

ui ut
i.

2.1. Kernel for linear PCA

In [7], the authors presented a method to learn shape
variations by performing PCA on a training set of shapes
(closed curves) represented as the zero level sets of signed
distance functions. Using the following kernel in the for-
mulation of Kernel PCA presented above, amounts to per-
forming Linear PCA on SDFs 2:

kid(Φi,Φj) = (Φi.Φj) =
∫ ∫

Φi(u, v)Φj(u, v)du.dv

(4)

for all SDFs Φi and Φj : R2 �→ R.
A different representation for shapes is to use binary

maps, i.e., to set to 1 the pixels located inside the shape
and to 0 the pixels located outside (see figure 1). One can
change the shape representation from SDFs to binary maps

using the Heaviside function HΦ =

{
1 Φ ≥ 0 ,

0 else .

Note that, in this case, the kernel allowing to perform
linear PCA is given by kid(HΦi,HΦj) = (HΦi.HΦj).

2.2. Kernel for nonlinear PCA

Choosing a nonlinear kernel function k(., .) leads to per-
forming nonlinear PCA. The exponential kernel has been a
popular choice in the machine learning community and has

1In this notation l refers to the first l eigenvectors of C used to build the
Kernel PCA space.

2id here stands for the identity function: when performing linear PCA
the kernel used is the inner scalar product in input space, hence the corre-
sponding mapping function ϕ = id.



proven to nicely extract nonlinear structures from data sets.
Using SDFs for representing shapes, this kernel is given by

kϕσ
(Φi,Φj) = e−

‖Φi−Φj‖2

2σ2 , (5)

where σ2 is the variance parameter computed a-priori and
‖Φi − Φj‖2 is the squared L2-distance between two SDFs
Φi and Φj . If the shapes are represented by binary maps,
the corresponding kernel is

kϕσ
(HΦi,HΦj) = e−

‖HΦi−HΦj‖2

2σ2 . (6)

This exponential kernel is one among many possible choice
of Mercer kernels: Other kernels could possibly be used to
extract other specific features from the training set [8].

2.3. Shape Prior for GAC

To include prior knowledge on shape in the GAC frame-
work, we propose to use the projection on the Kernel PCA
space as a model and to minimize the following energy:

EF
shape(χ) := d2

F [ϕ(χ), P lϕ(χ)] (7)

A similar idea was proposed in [13, 8], for the purpose of
pattern recognition. In (7), χ is a test shape represented us-
ing either a SDF (χ = φ) or a binary map (χ = Hφ) and ϕ
refers to either id (linear PCA) or ϕσ (Kernel PCA). Mini-
mizing EF

shape amounts to driving the test shape χ towards
the Kernel PCA space computed a priori from a training set
of shapes using (2). In the GAC framework, the minimiza-
tion of EF

shape(χ), can be undertaken as follows:

dφ

dt
= −∇φEF

shape = −∇χEF
shape.

dχ

dφ
(8)

The gradient of EF
shape can be computed by applying cal-

culus of variation and (3). For the kernel given in (6), the
following result is obtained:

∇φEF
shape = −ΣN

i=1gi(φ)kϕσ
(Hφ,Hφi)δ(φ)[Hφ − Hφi]

σ2

with [g1(φ), ..., gN (φ)] = − 2
N 1t + 2k̃

t

HφMK̃MH −
4k̃

t

HφMH

2.3.1 Linear PCA vs Kernel PCA

In this section we compare linear PCA with non-linear PCA
for two different representations of shapes, i.e., SDF and bi-
nary map. Two training set of shapes were used: The first
training set consists of various shapes of a man playing soc-
cer and the second training set consists of various shapes
of a shark (see Figure 1). These shapes were aligned us-
ing an appropriate registration scheme (see, [14]) to discard

differences between them due to Euclidian transformations.
The Kernel PCA space corresponding to each of the kernels
presented in Sections 2.1 and 2.2 were then built for the two
training sets. Starting from an arbitrary shape, Figure 2(a),
the contour was deformed by running equation (8) until con-
vergence: We will refer to this operation as “morphing”, in
what follows.

Figure 2(b) shows the morphing results obtained by ap-
plying linear PCA on SDF. Figure 2(d) shows the morphing
results obtained by applying linear PCA on binary maps.
As can be noticed, results obtained for the SDF representa-
tion bear little resemblance with the elements of the training
sets. Results obtained for binary maps are more faithful to
the learnt shapes. Figure 2(c) and (e) present the morphing
results obtained by applying nonlinear PCA on SDF and bi-
nary maps, respectively. In both cases, the final contour is
very close to the training set and results are better than any
of the results obtained with linear PCA.

Hence, Kernel PCA outperforms linear PCA as a means
to introduce shape priors and binary maps seem to be an
efficient shape representation. Besides, the learning process
using Kernel PCA comes with no significant additional cost
compared to linear PCA, thanks to the kernel formulation
[8, 13]. Another advantage of using the exponential kernel,
is that it enables to control the degree to which “mixing” is
allowed between the learnt shapes, in the shape prior, larger
σ’s allowing more mixing. This is shown in Figure 3. The
choice of σ typically depends on how much the shapes vary
within the data set: If the variation is large, a smaller value
for σ is usually preferable.

3. Intensity based segmentation

Different models [18, 1, 10], which incorporate geomet-
ric and/or photometric (color, texture, intensity) informa-
tion, have been proposed to perform region based segmen-
tation using level sets. In what follows, we present a novel
intensity based segmentation framework aimed at separat-
ing an object from the background, in an image I . The
main idea behind the proposed method is to build an “im-
age shape model” (denoted by G[I,Φ]) by thresholding the
image I based on the estimates of the intensity statistics of
the object (and background), available at each step t of the
contour evolution: G[I,Φ] is interpreted as the most likely
shape of the object of interest, based on the available in-
formation. The contour at time t is deformed towards this
“image shape model” by minimizing the following energy:

Eimage := ‖HΦ − G[I,Φ]‖2 =
∫

Ω

(HΦ − G[I,Φ])2 dxdy.

(9)
This energy functional amounts to measuring the distance
between two binary maps, e.g.: HΦ and G[I,Φ]. This is
quite valuable in the present context, where shapes are rep-



Figure 1. Three training sets (Before alignment - Binary images are presented here). First row, “Soccer Player” silhouettes (6 of the 22
used). Second row, “Shark” silhouettes (6 of the 15 used). Third row, “4 words” (6 of the 80 learnt; 20 fonts per word)
.

(a) (b) (c) (d) (e)
Figure 2. Morphing results of an arbitrary shape, obtained using Linear PCA and Kernel PCA applied on both Signed Distance Functions
and binary maps. First row: Results for the “Soccer Player” training set, Second row: Results for the “Shark” training set. (a): Initial
shape, (b): PCA on SDF, (c): Kernel PCA on SDF (d): PCA on binary maps, (e): Kernel PCA on binary maps.

resented using binary maps as in earlier sections. Thus,
when the shape energy term described before is combined
with the following formulation for image segmentation, all
the elements are expressed in terms of shapes. This is one
of the unique contributions in this work. In what follows,
we describe two particular cases of this general framework.

3.1. Object and background with different mean
intensities

As in [1, 18], we assume that the image is composed of
two regions having different intensity means: µo (respec-
tively µb) is the mean intensity of the object (respectively
of the background). Given an initial guess for the shape
of the object and representing the contour as the zero level
set of a SDF Φ, one can calculate the mean intensity inside

(µ1) and outside ( µ2) the curve as µ1 =
∫

I(x,y)HΦ dxdy∫
HΦdxdy

and µ2 =
∫

I(x,y)(1−HΦ) dxdy∫
(1−HΦ)dxdy

. The goal is to deform this
initial contour so that µ1 = µo and µ2 = µb. To achieve
this, the “image shape model” G[I,Φ] is generated at each
step t, in the following manner:

if µ1 > µ2, G[I,Φ](x, y) =

{
1 I(x, y) ≥ µ1+µ2

2 ;
0 else .

if µ1 ≤ µ2, G[I,Φ](x, y) =

{
1 I(x, y) ≤ µ1+µ2

2 ;
0 else .

Notice that G[I,Φ] is the image shape model (binary map)
obtained from thresholding the image intensities so that val-
ues closer to µ1 are classified as object (set to 1) and others
are classified as background (set of 0). For numerical ex-
periments, the function G[I,Φ] is calculated as follows:

if µ1 > µ2; G[I,Φ,ε] =
1
2

+
1
π

arctan

(
I − µ1+µ2

2

ε

)

else G[I,Φ,ε] =
1
2
− 1

π
arctan

(
I − µ1+µ2

2

ε

)

where ε, a parameter such that G[I,Φ,ε] → G[I,Φ] as ε → 0.

3.2. Object and background with different vari-
ances

Following [10], we assume that the image is composed
of two regions, with different variance in intensity. The
mean intensities are computed as before, while the vari-
ances inside (σ1) and outside (σ2) the curve are com-

puted as follows: σ2
1 =

∫
(I−µ1)

2HΦ dxdy∫
HΦ dxdy

and σ2
2 =∫

(I−µ2)
2(1−HΦ) dxdy∫

(1−HΦ) dxdy
. In this case, the image shape model



(a) (b) (c) (d) (e)
Figure 3. Influence of σ for the Kernel PCA method (exponential kernel) applied on binary maps. Morphing results of an arbitrary shape
are presented for the “Shark” training set. (a): Initial shape, (b): Morphing result for σ = 3, (c): σ = 7, (d): σ = 9, (e): σ = 15,.

G[I,Φ] is obtained as follows:

if σ1 < σ2, G[I,Φ] =

{
1 I2 ≥ I(x, y) ≥ I1 ;
0 else .

if σ1 > σ2, G[I,Φ] =

{
1 I(x, y) ≥ I1 or I(x, y) < I2 ;
0 else .

where,

I1 =
σ2

2µ1 − σ2
1µ2 − α

σ2
2 − σ2

1

and I2 =
σ2

2µ1 − σ2
1µ2 + α

σ2
2 − σ2

1

,

α = σ2σ1

√
(µ1 − µ2)2 + 2(σ2

1 − σ2
2)log(

σ1

σ2
)

This thresholding ensures that pixels set to 1 in G[I,Φ]

correspond to pixels that are more likely to belong to the
object of interest in the image, based on information avail-
able at step t. In the same way, pixels set to 0 in G[I,Φ]

correspond to pixels that are more likely to belong to the
background. Figure 4 shows the different cases justifying
the way thresholding is performed in equation (10).

In numerical applications, the binary map G[I,Φ] in (10)
is computed as follows (for ε small):

if σ1 < σ2;

G[I,Φ,ε] =
1
π

arctan
(

I − I1

ε

)
− 1

π
arctan

(
I − I2

ε

)
else

G[I,Φ,ε] = 1 − 1
π

arctan
(

I − I2

ε

)
+

1
π

arctan
(

I − I1

ε

)

Figure 5, presents results obtained for each of the image
shape models presented above.

4. Combining Shape Prior and Intensity infor-
mation

In this part, we combine shape knowledge obtained by
performing nonlinear PCA on binary maps with image in-
formation obtained by building an “image shape model”,
within the GAC framework. As presented above, EF

shape

and Eimage are squared distances between the shape of the
current contour and a model. However, Eimage is a squared

Figure 4. Probability density functions. Thick line: p(I ∈ Object);
Thin line: p(I ∈ background). It is straightforward to see that
p(I ∈ Object) > p(I ∈ Object) for I1 ≤ I ≤ I2, when σ1 < σ2

and for I ≥ I1 and I ≤ I2, when σ1 > σ2.

Figure 5. Segmentation results obtained using Eimage, equation
(9). Initial contour in black, final contour in white. Left: 1st mo-
ment only. Right: second order moments (Two regions of same
mean intensity and different variances)

distance in input space, whereas EF
shape is expressed in the

feature space. Thus, equilibrium would be hard to reach be-
tween “forces” extracted from EF

shape and Eimage
3. This

can be remedied by noticing that, for any SDFs φa and φb:

d2
F (φa, φb) = 2−2kϕσ

(Hφa,Hφa) = 2−2e−
‖HΦa−HΦb‖2

2σ2

By defining Eshape = −2σ2log( 2−EF
shape
2 ), a new shape

prior energy functional is obtained4. This energy Eshape,
like Eimage, is homogeneous to a square distance in input
space. This consistent description of energies allows for
efficient and intuitive equilibration between image cues and
shape knowledge, through the following energy functional:

E(Φ, I) = β1 Eshape(Φ) + β2 Eimage(Φ, I) (10)

3∇ΦEF
shape would, indeed, exhibit nonlinear behaviors due to the ex-

ponential terms figuring in its expression
4By applying the chain rule, one can verify that ∇φEshape and

∇φEF
shape have the same direction and similar influence on the evolution.



4.1. Invariance to Similarity Transformations:

Let p = [tx, ty, θ, ρ] = [p1, p2, p3, p4] be a vector of
parameters corresponding to a similarity transformation; tx
and ty corresponding to translation according to x and y-
axis, θ being the rotation angle and ρ the scale parame-
ter. Let us denote by Î(x̂, ŷ) the image obtained by apply-
ing the transformation: Î(x̂, ŷ) = I(ρ(x cos θ − y sin θ +
tx), ρ(x sin θ + y cos θ + ty)). As mentioned above, the
elements of the training sets are aligned prior to the con-
struction of the space of shapes. Supposing that the object
of interest in I differs from the registered elements of the
training set by a similarity of parameter p, this transforma-
tion can be recovered by minimizing E(Φ, Î) with respect
to the pi’s. During evolution, the following gradient descent
scheme can be performed for i ∈ [1, 4]:

dpi

dt
= −∇pi

E(Φ, Î) = −∇pi
Eimage(Φ, Î).

5. Experiments

This section presents segmentation results obtained by
introducing shape prior using Kernel PCA on binary maps
and using our intensity based segmentation methodology:
Equation (10) was run until convergence on diverse images.

5.1. Toy Example: Shape Priors Involving Objects
of Different Types.

Kernel methods have been used to learn complex multi-
modal distributions in an unsupervised fashion (see [8], and
the references therein). The goal of this section is to inves-
tigate the ability of the proposed framework to simultane-
ously learn and accurately detect objects of different shapes.
To this end, we built a training set consisting of four words,
“orange”, “yellow”, “square” and “circle” each written us-
ing twenty different fonts. The size of the fonts was chosen
to lead to words of roughly the same length. The obtained
words (binary maps, see Figure 1) were then registered ac-
cording to their centroid. No further effort such as matching
the letters of the different words was pursued. The method
presented in Section (2) was used to build the corresponding
space of shapes for the registered binary maps.

We tested our framework on images where a corrupted
version of either of the four words “orange”, “yellow”,
“square” or “circle” was present (Figure 6, 1st row). Word
recognition is a challenging task and addressing it using
geometric active contours may not be a panacea. How-
ever, the ability of the level set representation to naturally
handle topological changes was found to be useful for this
purpose: During evolution, the contour split and merged a
certain number of times to segment the disconnected letters
of the words. In all the following experiments, β1 and β2

were fixed in (10) and the same initial contour was used.

Experiment 1: In this experiment, one of the words
“square” belonging to the training set was corrupted: The
letter “u” was almost completely erased. The shape thus
obtained was filled with gaussian noise of mean µo = .5
and variance σo = .05. The background was also filled
with Gaussian noise of same mean µb = .5 but of variance
σb = .2. The result of applying our method is presented
Figure 6(a). Despite the noise and the partial deletion, a
very convincing segmentation is obtained. In particular, the
correct font is detected and the letter “u” accurately recon-
structed. In addition, the final curve is smooth even if no
curvature term was used for regularization. Hence, using
binary maps to represent shape priors can have valuable
smoothing effects, even when dealing with noisy images.

Experiment 2: In this second experiment, one of the el-
ements of the training set was used. A thick line (occlu-
sion) was drawn on the word and a fair amount of gaussian
noise was added to the resulting image. The result of ap-
plying our method is presented Figure 6(b). Despite the
noise and the occlusion, a very convincing segmentation is
obtained. In particular, the correct font is detected and the
thick line completely removed. Once again, the final con-
tour is smooth despite the fairly large amount of noise.

Experiment 3: Here, the word “yellow” was written us-
ing a different font from the ones used to build the train-
ing set. Additionally, a “linear shadowing” was used in the
background (completely hiding the letter ”y”) and the letter
”w” was replaced by a grey square. The result of apply-
ing our framework is presented in Figure 6(c). The word
“yellow” is correctly recognized and segmented. Also, the
letters “y” and ”w”, were completely reconstructed.

Experiment 4: In this experiment, the word “orange” was
handwritten in capital letters roughly matching the size of
the letters of the words in the training set. The intensity of
the letters was chosen to be rather close to some parts of the
background. In addition, the word was blurred and smeared
in a way that made its letters barely recognizable. This type
of blurring effect is often observed in medical images due
to patient motion. This image is particularly difficult to seg-
ment, even using shape prior, since the spacing between
letters and the letters themselves are very irregular due to
the combined effects of handwriting and blurring. Hence,
mixing between classes (confusion between either of the 4
words) can be expected in the final result. In the final result
obtained, the word “orange” is not only recognized but sat-
isfyingly recovered; in particular, a thick font was obtained
to model the thick letters of the word ( Figure 6(d)).

Hence, starting for each experiment from the same initial
contour, our algorithm was able to accurately detect which
word was present in the image. This highlights the ability of
our method not only to gather image information through-
out evolution but also to distinguish between objects of dif-
ferent classes (“orange”, “yellow”, “square” and “circle”).



Comparing the final contours obtained in each experiments
to the final “image shape model” G[I,φ] (last row of Fig-
ure 6), one can measure the effect of our shape prior model
in constraining the contour evolution: The image informa-
tion alone would lead to a shape that would bear very little
resemblance with any of the four words learnt.

5.2. Real Images Example: Tracking of challenging
sequences

To test the robustness of the framework, tracking was
performed on two challenging sequences. A very simple
tracking scheme was used: the same initial contour was
used for each image in the sequence. This contour was
initially positioned wherever the final contour was in the
preceding image. The coefficients β1 and β2 were fixed
throughout each sequence. Of course, many efficient track-
ing algorithms have already been proposed. However, con-
vincing results were obtained here without considering the
system dynamics, for instance. This highlights the effi-
ciency of including prior knowledge on shape for the robust
tracking of deformable objects.

5.2.1 Soccer Player Sequence

In this sequence (composed of 130 images), a man is jin-
gling with a soccer ball. The challenge is to accurately
capture the large deformations due to the movement of the
person (e.g.: limbs undergo large changes in aspect), while
sufficiently constraining the contour to discard clutter in the
background. A training set of 22 silhouettes (Figure 1, first
row) was used. The version of Eimage involving the inten-
sity means only was used to capture image information. De-
spite the small number of shapes used, successful tracking
was obtained, correctly capturing the posture of the player.

5.2.2 Shark Video

In this sequence (composed of 70 images), a shark is evolv-
ing in a highly cluttered environment. Besides, the shark is
oftentimes occluded by other fish and is poorly contrasted.
To perform tracking, 15 shapes were extracted from the first
half of the video (Figure 1, second row) and used to build
shape prior. The version of Eimage involving the variances
was used to make up for the poor contrast of the shark in the
images. Once again, despite the small training set, success-
ful tracking performances were observed: The shark was
correctly captured, while clutter and obstacles rejected.

6. Conclusion

In this work, we used Kernel PCA to introduce prior
knowledge about shapes in the GAC framework. Better per-
formance of Kernel PCA over linear PCA was demonstrated
for two representations of shapes (binary maps and SDFs).

We also developed a general approach to separate an object
from the background using various image intensity statis-
tics. In our algorithm, image information and shape knowl-
edge were combined in a consistent fashion: both energies
were expressed in terms of shapes. The proposed method
not only allowed to simultaneously learn shapes of differ-
ent objects but was also robust to noise, blurring, occlusion
and clutter. In addition, even if the same parameters and
same initial contour were used for each of the image of the
sequences, successful tracking was obtained: This further
highlights the robustness of the framework.
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